Final Report, ICS 699: Sony PlayStation Programming Project

Final Report, ICS 699: Sony PlayStation Game Programming Project

Matthew Sharritt

December 20, 2002

Instructor David Nickles

Table of Contents

Abstract

3
Introduction / Project Description

4
Project Design

6
Implementation of the Game

9
Conclusion

12
Appendix

13
Abstract:

This paper discusses the design of a game for the Sony PlayStation. First, an introduction to the game is presented, followed by a thorough description of the game’s design and game play. Key factors are discussed on what makes a game desirable, such as humor, game play, recognizable objects, good visuals and sound effects, consistency, challenging but accomplishable tasks, and decent AI. These factors influence what makes a game something that one would want to return to multiple times to play. Following are details on how the game was implemented, such as how parts of the game work, what coding tricks were used, and what ideas were discovered while making the game. Finally, a conclusion is presented that wraps up what was made, what could be improved, and other comments / reactions that evaluate the project.
Introduction / Project Description:

What makes a game fun? What makes one want to return to it and play it again? There are many factors involved in making a fun game, and these factors were studied and applied to creating a game for the Sony PlayStation in my project this semester.

I decided to make a shooter-style game, where the objective is to kill your opponent before he kills you. This is done using the light-gun controller, so you can play the game with a controller that resembles a gun. Once the game is started, it is a shoot-out between you and your opponent. Your opponent runs back and forth between walls, and will pop up over the top of a wall. You are also behind a wall, and are allowed to duck behind the wall to avoid being shot.
The characters in the game are South Park-style characters. If you are unfamiliar with South Park, it is a television show that is very popular with the young adult population, and features kid cartoon characters. The characters have small bodies and big heads, which give them a funny sort of look. I incorporated this into my game, but made some of the faces on the mini-bodies be people that are familiar around our department.

The name of the game is ‘Don’t Shoot Kenny’, and this comes from the one catch in the game- the ‘Kenny’ figure who is running around next to the enemy you are shooting at, and he cannot be shot at. In the South Park television series, Kenny is one of the characters that somehow dies on every episode. In my game, if you shoot Kenny, you loose points from your score, and loose some of your health.

You and your opponent’s health are the factors that determine whether you go to the next level, or loose the game. If your health drops to zero, you loose the game. If your opponent’s health drops to zero, you move to the next level, and get full life at the start.

The game has seven levels and opponents. Each level has a different background, and a different opponent. If you can beat all seven opponents, you then face off the seven opponents again- but this time at a higher difficulty level. The higher difficulty level causes your opponents and Kenny to move faster, making them harder to distinguish and shoot at.

The overall objective of the game is to get the highest score. This is what I am hoping will bring people back to play again and again- the Pac Man style of getting through as many levels and achieving the highest score. This allows the players of the game bragging rights with their friends, and will hopefully create some sort of competition.

Project Design:

Throughout the semester, various game design techniques were studied and discussed. One of the most challenging but simple questions is, “What makes a game fun?” Some of the answers to this question are obvious, and others are not quite as obvious. Reading was done throughout the semester, from the book “Game Design, Theory and Practice” by Richard Rouse III. This book contains some very valuable information on designing games that are fun to play, and draw people back to play a game. In this section, I will discuss some of the answers to the question of what makes a game fun, a question that I spent time considering through the semester. I tried to integrate as many of these principles as I could into my game.
A Challenge
Gamers want a game to be challenging- something that has a steady increase in difficulty. The easy level should be easy; something that a beginner could figure out quickly and not loose for too long. My game takes this into consideration- the easy level is easy. I tested this on several people, and everyone was able to pass the first level on the easy setting without a problem. However, there needs to be added difficulty as time goes on, to create a challenge for the player. My game does this- after beating the game on easy, the medium levels gets tougher, followed by the hard levels, which are very hard to win. This steady climb in difficulty makes the game challenging, and appealing to gamers of different skill levels.

Bragging Rights
Gamers want something that they can brag about to their friends. In my game, the bragging rights are from getting the highest score, similar to Pac-Man. I have heard gamers bragging about how high they have scored in certain games, and I believe that my game could be fun enough for people to brag to each other about how high they were able to score.

Good Graphics

Looking back in time, one can think of countless games that have been fun, even though they were very simple, and didn’t have modern looking graphics and sounds. However, the latest games are often gauged partially on how good their graphics are. I tried to take this into consideration when making my game. Originally, I was planning to have characters that were realistic in size. However, I realized that creating full size bodies made the faces of my characters less visible. The small bodies I chose to use for the game made the faces much more visible, and the expressions on the character’s faces can be seen. In cartooning, this is often the most important part of a funny joke- the character’s facial expression. By changing the graphical appearance of my characters, I feel that I was able to make a game that was more fun- not only because of the good graphical quality, but also the emotional experience being added by visible facial expressions.

Good Sounds
Good sounds in a game allow for better game play. For instance, in my game, sounds provide feedback that either you have fired the gun, or that you are being shot at. Also, the guns in my game have different pitches- the player’s game has a deeper sound, where the computer’s gun has a higher pitch sound. This allows for differentiating whether you are shooting or being shot at, and is obvious without even looking at the screen. When combined with other features such as good graphics and game play, good sound will add very much to a game’s overall impression.
Fantasizing / Immersion
Fantasy is a very important feature of a good game. The game player should be able to imagine that they are actually doing whatever they are participating in- and in a sense step into the game they are playing. Great games have a way of totally absorbing those who are playing it. I have been a victim of this- having countless hours pass by without realizing it, since I was so immersed and focused on a good game.

Consistency
One thing that is a ‘must’ in games is consistency. Inconsistency will turn gamers away- because it makes them angry when certain factors or elements of a game are suddenly changed. In my game, I provided a consistent layout, and consistent game play, so that the user won’t become confused at any point in the game. For instance- what if you re-assigned some buttons for a different level? If I changed the fire button on the gun controller to something else mid-way through the game, the gamer would probably want to quit the game after being frustrated at why they couldn’t fire the gun the way they were doing so before.

Accomplishable Tasks
Users expect the tasks that they have to complete in a game to be something that they can accomplish- something that is not too easy, but also not too difficult. The tasks should be reasonable in nature and not too confusing such that the player gets lost. My game allows a similar task in each level, but over time the difficulty increases. However, the task itself is very straightforward on each level, and it is something that can be accomplished without getting stuck. Users expect to fail, but not immediately. If the user never failed, then the game would not be very challenging.
Humor Is Always Fun
When designing a game to be fun, a little humor couldn’t hurt. In my game, I took this into consideration and tried to add things that my potential gamers might find amusing. The South Park theme in my game added a level of humor- almost everyone I showed the game to found it amusing on first sight. I also made the faces on the characters recognizable- some are people that are around the department. This added some additional humor to the game for those who can recognize the characters in the game.

Artificial Intelligence
Many games have what might be called ‘artificial stupidity’, because the AI in the game is so bad. My game might fall into that category- considering that the villain motions are completely random. (See below for implementation details). However, for the purposes of the game, it seems to work quite well. The randomness adds effects that I would not have considered originally, such as the villain using Kenny as cover, in essence holding him hostage to shoot at you without being shot at. This random effect happens in the game, and adds effects to the game that I might not have originally designed. Typically a random movement would be bad AI, but in my game, it seems to work quite well.

Implementation of the Game:
Game Themes

The South Park theme in my game has brought a smile to everyone that I have shown the game to. When people take a look at the game, their first impression is that the game is funny. This adds an element of humor to the game that makes people want to play it. Also, the small bodies and big heads are a visual element that makes people laugh- especially if they recognize the face. For one to see someone they know with a miniature body and a couple of guns can be rather humorous.

Keeping with the South Park theme, the game was named ‘Don’t Shoot Kenny’. This is because on every level, the Kenny character from the television series is running around, sort of like an innocent bystander. Shooting Kenny will take points off of your score and health. In the South Park episodes, Kenny is a character that happens to die on every episode somehow, so this character lent himself to be the character in my game that was risking his life running around next to the villain in every level.

Game Play

I designed the game to have a villain shooting at you and for there to be two walls that the villain can run between. This allows the villain to run back and forth between the walls, creating a target that you can shoot at. I thought if there was only one wall, the villain would not be as easy to shoot at, and the logic of peeking out from the sides of only one wall would be difficult.

Character Movement and AI
Since there are two walls, the villain can hide behind the wall, pop up on top of the wall, and run in between the two walls. The logic is basically a state chart, where hiding behind each wall is a state, running from left to right is a state, running right to left is a state and popping up behind a wall is a state. For each cycle of the game, a random number is generated and compared to a set of numbers to determine if the state should be changed, and what the next state is. The result is something that worked very well- a character with random motion, that typically changes states every couple of seconds. However, since the logic is random, the character can make several actions in a row, or pause behind a wall for several seconds.

The character in the game is trying to kill you, just as you are trying to kill him. When the villain in the game is running between walls or popping up behind a wall, there is a random function that determines if the villain is shooting at you. This also results in random game play, where the villain can shoot short bursts of fire at you, or pause in between shots.

Getting Shot

Upon getting shot in the game, the screen is flashed red. This simulates the getting shot feeling (although I have never experienced this). I have seen this in other games, and when accompanied with sound, it makes a shocking effect to let the player know that they have been hit. In order to accomplish the red burst after getting shot, all of the sprites on the screen are given higher red values and lower blue and green levels (RGB). Over time, these values normalize to their original value. This creates the look of a red pulse on the screen.

The red flash, the gun shots, and the character’s guns firing (visually) at you give the game a very real sense that the character in the game is shooting at you. These three features work well together to give a sense of realism, that couldn’t be achieved if one of the pieces is missing.

First-Person View

As a first person shooter, you are given a view of a world, typically with a bunker or house in the background. As described above, the Kenny figure and the villain run around between two walls, with the villain shooting at you. You play the game using the PlayStation light gun, which allows you to fire back at the villain. Also, you are given the ability to duck behind a wall. A button on the back of the PlayStation light gun allows you do to this. Pressing the button makes you immune to your opponent’s fire, and adds an interesting element to the game. An interesting effect is created upon ducking- the other game scenery is shifted to create an effect that makes it appear as if you were actually ducking. The ducking feature adds a lot to the game, and makes it a realistic shoot-out. If the villain runs from one wall to another, and Kenny is in front of him (holding him hostage), it makes sense to duck. Otherwise you can be shot at, and returning fire would result in shooting Kenny which decrements your health and score.

Game Objective

The overall objective of the game is to make it to the highest level, and achieve the highest score. Players can start on any of three levels- easy, medium or hard. This level choice results in the speed of the characters that are being played. The faster the character, the harder they are to hit, and the more likely you are to miss shooting them. Upon winning all seven stages in a difficulty level, you then replay the stages at a higher difficulty level. This continues indefinitely, until the player looses the game. The goal is to achieve the highest score, which is obtained by getting through as many stages as possible, with the most amount of health remaining at each stage.

Scoring

At the end of each stage, the player’s remaining health is added to their total score. The total score is calculated by adding the total hit points that the player can accrue by hitting the villains in each stage to the health remaining at the end of each of the stages they pass. Of course, hitting Kenny (and loosing health) counts negatively against one’s score. By adding the remaining health of the player at the end of each level, the game has another dimension added to it that makes it more interesting to the player.

Statistics

Also, at the end of each stage, the player is shown statistics on how they performed on a particular level. They are shown the number of shots they have fired, the number of shots that were hits, and their calculated accuracy rating. This helps the user gauge how well they performed on a level. Also, their remaining health at the end of the level and their total score are shown. These statistics will show the player how well they are playing, and give them incentive to improve themselves on the next level.

Conclusion:
Looking back on the course of the semester, I really enjoyed working on this project. All of the game fundamentals that I learned in the class were very helpful to me in designing a game that was fun to play and would make players come back again to play my game. I think that the game I produced was a success, and I am very proud to have accomplished making the game by myself. Others taking the class formed teams to complete projects, and I noticed that it was often one person doing the majority of the work for the team.

Throughout the course of the semester, I think I wasted too much time deciding what exactly I was going to do for my final project in the class. I started to pursue other ideas, and the time lost pursuing those ideas really held me back. To make up for lost time, I spent the majority of my days towards the end of the semester in the lab programming. However, I feel I was able to turn out a good game, and I have had comments from classmates affirming that the game I made was very good- one even said the best game they had seen thus far. I respect my classmates’ opinions very much, and this comment made me feel very good about what I had accomplished, considering that I made the game solo, and not on a team.

Although I am proud of the game, I think that it is a good project for someone to pick up in future semesters, because there are a lot of improvements that could be made. With more time, more sounds and animations could be added to the game. Better menu systems would make the game more visually pleasing. Also, more complicated artificial intelligence (AI) could improve the game play in the game. An idea came up for balloons to float up occasionally, that could add life back to your health if you could shoot them before they disappear off the screen. The more things to shoot at, the better! If a future student would like to take this project and run with it, I am all for it, and would be glad to assist in any way possible, and answer questions they may have.

Overall I had a great time working on this project, and I would recommend it to anyone. I think that I have gained valuable programming skills, and improved my ability to create software from start to finish. The PlayStation is a great environment to develop on, and much can be gained from the experience of working with it.
Appendix: Game Code (C)
Main.c

/***

** File:

Main.c

 **

** Author:
Matthew Sharritt

 **

** Version:
11.0

 **

** Description:
PlayStation game - shooter

 **

**

 **

**

 **

**/

#include <stdio.h>

#include <sys/types.h>

#include <libetc.h>

#include <libgte.h>

#include <libgpu.h>

#include <libgs.h>

#include <libspu.h>

#include <libsnd.h>

#include <libcd.h>

#include <libmath.h>

#include <stdlib.h>

#include <rand.h>

#include "gun.h"

/************** Define for graphics ************************/

#define OT_LENGTH 14

// OT length

#define PACKETMAX (10000)

// max obj #

#define PACKETMAX2 (PACKETMAX*24)

// (psx voodoo, multiply by 24)

#define SCREEN_WIDTH
320
// width & height of screen

#define SCREEN_HEIGHT
240

#define CHAR_OFFSET

32

// offset to center of character sprite

#define BASE_HEIGHT

125

// base height of wall, chars

#define LEFT_LOC

40

// x-coord for leftmost pos chars can go

#define RIGHT_LOC

225

// "

" rightmost " " " "

#ifndef true

#define true 1

#endif

#ifndef false

#define false 0

#endif

#define level1Mem

0x80010000
// memory locations for background images

#define level2Mem

0x800228e0

#define level3Mem

0x800351c0

#define level4Mem

0x80047aa0

#define level5Mem

0x8005a380

#define level6Mem

0x8006cc60

#define level7Mem

0x8007f540

#define level1GuyMem

0x80091e20
// memory locs for characters

#define level2GuyMem

0x80093e20

#define level3GuyMem

0x80095e20

#define level4GuyMem

0x80097e20

#define level5GuyMem

0x80099e20

#define level6GuyMem

0x8009be20

#define level7GuyMem

0x8009de20

#define wallMem

0x8009fe20

// memory loc for walls

#define level0Mem

0x800a7f08

// splash screen

#define kennyMem

0x800bd308
// kenny

#define bloodMem

0x800bf308

#define gunshotMem

0x800c9330

/************** For Menu.c *********************************/

char *title = " Main Menu: ";

static char *menu[] = {
"Start New Game", "Increment Level", "Exit Menu", 0};

char *title2 = " Choose Difficulty: ";

static char *menu2[] = { " Easy", " Medium", " Hard", 0};

/************** Global Variables ***************************/

int id;

// font id

int gameLevel = 0;

// curr level in game

int maxGameLevels = 7;

// max num of game levels

int difficulty = 1;

// easy / med / hard

int score = 0;

// player score

int health = 100;

// player health

int enemyHealth = 100;

// enemy health

int charState = 3;

// character state

int kennyState = 2;

// kenny state

int random = 0;

// random #

int baseHeight = BASE_HEIGHT;

// base height of chars

int squirt = 15;

// getting shot part speed

float wallScaleX = 0.8;

float wallScaleY = 0.6;

int shotsFired = 0;

int shotsHit = 0;

int accuracy = 0;

int finalScore = 0;

short start = true;

// pause before game start

short DisplayMenu = false;

// Main menu toggle

short DisplayMenu2 = false;

// difficulty menu toggle

short newGame = true;

// start of new game

short newLevel = true;

// set up new level in main while

short charUp = false;

// character popup

short kennyUp = false;

// kenny popup

short kennyShot = false;

// if kenny is shot

short characterShot = false;

// if char is shot

short characterShooting = false;

// if char shooting

short playerShooting = false;

// if player shooting

short duck = false;

// if player ducking

short gameOver = false;

short firstTime = false;

// sets character sound, play gunshot only first frame

RECT r;

/************** For Control ********************************/

static u_long PadData, opadd = 0;

// To store Pad Data

/************** For Graphics *******************************/

GsOT WorldOrderingTable[2];

 // OT handlers

GsOT_TAG OrderingTable[2][1<<OT_LENGTH];

// OT

PACKET GPUOutputPacket[2][PACKETMAX2];

// GPU packet work area

GsIMAGE backgroundImage;

GsIMAGE characterImage;

GsIMAGE wallImage;

GsIMAGE kennyImage;

GsIMAGE gunshotImage;

GsIMAGE bloodImage;

GsSPRITE backgroundSprite;

GsSPRITE characterSprite;

GsSPRITE wallSprite[3];

GsSPRITE kennySprite;

GsSPRITE gunshotSprite;

GsSPRITE bloodSprite;

typedef struct {

long prog;

long pitch;

} SOUNDFX;

SOUNDFX fired = {0x0070, 0x3E00};

SOUNDFX firedAt = {0x0070, 0x4800}; //64

/************** Prototypes *********************************/

void InitGraphics (void);

void InitVRAM (GsIMAGE *timdata);

void InitSprite2 (GsIMAGE *timdata, GsSPRITE *sprite_, int x, int y, int u , int v, int w, int h, float sizeX, float sizeY);

void Display (int currentBuffer);

void PadRoutine (void);

void OrderAndDisplay (void);

void ShowMenus

 (void);

void LoadFont

 (void);

void CleanupExit
 (void);

void AnimateCharacter (void);

void AnimateKenny (void);

void AnimateBlood
 (int xCoord, int yCoord);

void AnimateGunFire
 (int xCoord, int yCoord);

short CheckHit

 (int xCoord, int yCoord, int xShot, int yShot);

short CheckWall

 (int xShot, int yShot);

/**

Routine: Main

Parameters: none

Returns: int

Description: contains main loop for game

***/

int main (void) {

 PadData = 0;

 ResetCallback();

 guninit(); // zzz

 //PadInit(0);

 InitGraphics();

 InitSound();

r.h = 3;

r.w = 3;

 LoadFont();

 menuInit(1, 80, 89, 256);

// initialize menu

/*********** Main Game Loop *****************/

while (1) {

if(newGame && gameLevel == 0) {

GsGetTimInfo((u_long *)(level0Mem+4), &backgroundImage);

InitVRAM(&backgroundImage);

InitSprite2(&backgroundImage, &backgroundSprite, 0, 0, 0, 0, 160, 240, 2, 1);

gameLevel++;

}

/******** main screen ********************/

while(newGame) {

score = 0;

health = 100;

PadData = pad_read();

OrderAndDisplay();

PadRoutine();

ShowMenus();

start = true;

}

if(newLevel) {

while(!start) {

PadData = pad_read();

if ((PadData & Pad2x) && (PadData != opadd)) {

start = true;

gameOver = false;

}

OrderAndDisplay();

PadRoutine();

ShowMenus();

}

health = enemyHealth = 100;

backgroundSprite.r = kennySprite.r = characterSprite.r = wallSprite[0].r = wallSprite[1].r = wallSprite[2].r = 128;

backgroundSprite.g = kennySprite.g = characterSprite.g = wallSprite[0].g = wallSprite[1].g = wallSprite[2].g = 128;

backgroundSprite.b = kennySprite.b = characterSprite.b = wallSprite[0].b = wallSprite[1].b = wallSprite[2].b = 128;

baseHeight = BASE_HEIGHT;

shotsFired = shotsHit = 0;

switch (gameLevel) {

case 1: GsGetTimInfo((u_long *)(level1Mem+4), &backgroundImage);

GsGetTimInfo((u_long *)(level1GuyMem+4), &characterImage);

InitVRAM(&backgroundImage);

InitVRAM(&characterImage);

break;

case 2: GsGetTimInfo((u_long *)(level2Mem+4), &backgroundImage);

GsGetTimInfo((u_long *)(level2GuyMem+4), &characterImage);

InitVRAM(&backgroundImage);

InitVRAM(&characterImage);

break;

case 3: GsGetTimInfo((u_long *)(level3Mem+4), &backgroundImage);

GsGetTimInfo((u_long *)(level3GuyMem+4), &characterImage);

InitVRAM(&backgroundImage);

InitVRAM(&characterImage);

break;

case 4: GsGetTimInfo((u_long *)(level4Mem+4), &backgroundImage);

GsGetTimInfo((u_long *)(level4GuyMem+4), &characterImage);

InitVRAM(&backgroundImage);

InitVRAM(&characterImage);

break;

case 5: GsGetTimInfo((u_long *)(level5Mem+4), &backgroundImage);

GsGetTimInfo((u_long *)(level5GuyMem+4), &characterImage);

InitVRAM(&backgroundImage);

InitVRAM(&characterImage);

break;

case 6: GsGetTimInfo((u_long *)(level6Mem+4), &backgroundImage);

GsGetTimInfo((u_long *)(level6GuyMem+4), &characterImage);

InitVRAM(&backgroundImage);

InitVRAM(&characterImage);

break;

case 7: GsGetTimInfo((u_long *)(level7Mem+4), &backgroundImage);

GsGetTimInfo((u_long *)(level7GuyMem+4), &characterImage);

InitVRAM(&backgroundImage);

InitVRAM(&characterImage);

break;

default:

break;

}

GsGetTimInfo((u_long *)(kennyMem+4), &kennyImage);

InitVRAM(&kennyImage);

GsGetTimInfo((u_long *)(wallMem+4), &wallImage);

InitVRAM(&wallImage);

GsGetTimInfo((u_long *)(gunshotMem+4), &gunshotImage);

InitVRAM(&gunshotImage);

GsGetTimInfo((u_long *)(bloodMem+4), &bloodImage);

InitVRAM(&bloodImage);

InitSprite2(&backgroundImage, &backgroundSprite, 0, 0, 0, 0, 160, 240, 2, 1);

InitSprite2(&characterImage, &characterSprite, LEFT_LOC, baseHeight, 0, 0, 64, 64, 1, 1);

InitSprite2(&wallImage, &wallSprite[0], 10, baseHeight, 0, 0, 128, 128, wallScaleX, wallScaleY);

InitSprite2(&wallImage, &wallSprite[1], 200, baseHeight, 0, 0, 128, 128, wallScaleX, wallScaleY);

InitSprite2(&kennyImage, &kennySprite, RIGHT_LOC, baseHeight, 0, 0, 64, 64, 1, 1);

InitSprite2(&wallImage, &wallSprite[2], 20, 200, 0, 0, 128, 128, 2.1, 1.4);

InitSprite2(&gunshotImage, &gunshotSprite, 200, baseHeight, 0, 0, 64, 64, 1, 1);

InitSprite2(&bloodImage, &bloodSprite, 200, baseHeight, 0, 0, 64, 64, 1, 1);

newLevel = 0;

duck = false;

}

/* increase difficulty if completed all levels */

if(gameLevel > maxGameLevels) {

gameLevel = gameLevel % maxGameLevels;

newLevel = true;

difficulty++;

}

/********* if game over
***********************/

while(gameOver) {

PadData = pad_read();

if ((PadData & Pad2Start) && (PadData != opadd)) {

DisplayMenu = true;

}

OrderAndDisplay();

PadRoutine();

ShowMenus();

}

/********* animate characters *****************/

AnimateCharacter();

AnimateKenny();

/********* for duck / hide animation **********/

if(duck && (wallSprite[2].y > 66)) {

wallSprite[2].y -= 14;

wallSprite[1].y -= 2;

wallSprite[0].y -= 2;

backgroundSprite.y--;

characterSprite.y -= 2;

kennySprite.y -= 2;

baseHeight -= 2;

}

else if ((!duck) && (wallSprite[2].y < 200)) {

wallSprite[2].y += 14;

wallSprite[1].y += 2;

wallSprite[0].y += 2;

backgroundSprite.y++;

characterSprite.y += 2;

kennySprite.y += 2;

baseHeight += 2;

}

/********* update gun shot coordinates ********/

PadData = pad_read();

r.x = getH(1)-25;

r.y = getV(1)-15;

/*********** if player shooting gun ******************/

if ((!duck) && (PadData & Pad2sqr) && (PadData != opadd) && CheckHit(kennySprite.x, kennySprite.y, r.x, r.y)) {

kennyShot = true;

health -= 10;

score -= 10;

}

else if ((!duck) && (PadData & Pad2sqr) && (PadData != opadd) && CheckHit(characterSprite.x, characterSprite.y, r.x, r.y)) {

characterShot = true;

enemyHealth -= 5;

score += 5;

shotsHit++;

}

/*********** Controls health / new level *************/

if(health <= 0) {

finalScore = score;

newGame = true;

gameOver = true;

}

else if(enemyHealth <= 0) {

score += health;

gameLevel++;

newLevel = true;

start = false;

}

/*********** if shot *********************************/

if(backgroundSprite.r > 128) {

// r

backgroundSprite.r -= squirt;

characterSprite.r -= squirt;

kennySprite.r -= squirt;

wallSprite[0].r -= squirt;

wallSprite[1].r -= squirt;

wallSprite[2].r -= squirt;

// g

backgroundSprite.g += squirt;

characterSprite.g += squirt;

kennySprite.g += squirt;

wallSprite[0].g += squirt;

wallSprite[1].g += squirt;

wallSprite[2].g += squirt;

// b

backgroundSprite.b += squirt;

characterSprite.b += squirt;

kennySprite.b += squirt;

wallSprite[0].b += squirt;

wallSprite[1].b += squirt;

wallSprite[2].b += squirt;

}

else {

backgroundSprite.r = backgroundSprite.g = backgroundSprite.b = 128;

characterSprite.r = characterSprite.g = characterSprite.b = 128;

kennySprite.r = kennySprite.g = kennySprite.b = 128;

wallSprite[0].r = wallSprite[0].g = wallSprite[0].b = 128;

wallSprite[1].r = wallSprite[1].g = wallSprite[1].b = 128;

wallSprite[2].r = wallSprite[2].g = wallSprite[2].b = 128;

}

OrderAndDisplay();

PadRoutine();

accuracy = 100* shotsHit / shotsFired;

ShowMenus();

} // end while loop

CleanupExit();

return 0;

} // end main

/**

Routine: InitGraphics

Parameters: none

Returns: none

Description: initializes graphics for game

***/

void InitGraphics (void) {

SetVideoMode(MODE_NTSC);

// NTSC video MODE

// initialize graphic

ResetGraph(0);

GsInitGraph(SCREEN_WIDTH, SCREEN_HEIGHT, GsINTER|GsOFSGPU, 1, 0);

 // definition of display buffer

 GsDefDispBuff(0, 0, 0, SCREEN_HEIGHT);

// Init OT

WorldOrderingTable[0].length = OT_LENGTH;

WorldOrderingTable[1].length = OT_LENGTH;

WorldOrderingTable[0].org = OrderingTable[0];

WorldOrderingTable[1].org = OrderingTable[1];

GsClearOt(0,0,&WorldOrderingTable[0]);

GsClearOt(0,0,&WorldOrderingTable[1]);

} // end InitGraphics

/**

Routine: InitVRAM

Parameters: GsIMAGE (timdata)

Returns: none

Description: initializes VRAM for game

***/

void InitVRAM (GsIMAGE *timdata) {

 RECT rect;

 // Load images in frame buffer

 rect.x = timdata -> px; // coord x beginning of the TIM image

 rect.y = timdata -> py; // coord y beginning of the TIM image

 rect.w = timdata -> pw; // TIM width

 rect.h = timdata -> ph; // TIM height

 LoadImage(&rect,timdata -> pixel); // load image into frame buffer

} // end InitVRAM

/**

Routine: InitSprite2

Parameters: GsIMAGE (timdata), GsSprite (sprite), x (int), y (int),

u(int), v(int), w(int), h(int), sizeX(float), sizeY(float)

Returns: none

Description: initializes sprites

***/

void InitSprite2 (GsIMAGE *timdata, GsSPRITE *sprite_, int x, int y, int u , int v, int w, int h, float sizeX, float sizeY) {

 sprite_ -> attribute = 0x2000000; // 16 bit image

 sprite_ -> x = x;

 sprite_ -> y = y;

 sprite_ -> w = w;

 sprite_ -> h = h;

 sprite_ -> tpage = GetTPage(2,0, timdata -> px, timdata -> py);

 ////////////////////

 sprite_ -> u = u;

 sprite_ -> v = v;

 ////////////////////

 (sprite_ -> r) = (sprite_ -> g) = (sprite_ -> b) = 128;

 (sprite_ -> mx) = (sprite_ -> my) = 0;

 (sprite_ -> scalex) = ONE * sizeX;

 (sprite_ -> scaley) = ONE * sizeY;

 sprite_ -> rotate = 0;

 DrawSync(0);

} // end InitSprite 2

/**

Routine: Display

Parameters: currentBuffer (int)

Returns: none

Description: displays current buffer

***/

void Display (int currentBuffer) {

 DrawSync (0);

 VSync (0);

 GsSwapDispBuff();

 GsSortClear(100,100,100,&WorldOrderingTable[currentBuffer]);

 GsDrawOt(&WorldOrderingTable[currentBuffer]);

FntFlush(-1);

} // end Display

/**

Routine: OrderAndDisplay

Parameters: none

Returns: none

Description: orders sprites and displays them

***/

void OrderAndDisplay (void) {

// Order objects in OT & Display them

int activeBuffer;

activeBuffer=GsGetActiveBuff();

GsSetWorkBase ((PACKET*)GPUOutputPacket[activeBuffer]);

GsClearOt (0,0,&WorldOrderingTable[activeBuffer]);

GsSortSprite (&backgroundSprite, &WorldOrderingTable[activeBuffer], 7);

GsSortSprite (&characterSprite, &WorldOrderingTable[activeBuffer], 6);

GsSortSprite (&kennySprite, &WorldOrderingTable[activeBuffer], 5);

GsSortSprite (&gunshotSprite, &WorldOrderingTable[activeBuffer], 4);

GsSortSprite (&bloodSprite, &WorldOrderingTable[activeBuffer], 3);

GsSortSprite (&wallSprite[0], &WorldOrderingTable[activeBuffer], 2);

GsSortSprite (&wallSprite[1], &WorldOrderingTable[activeBuffer], 2);

GsSortSprite (&wallSprite[2], &WorldOrderingTable[activeBuffer], 1);

ClearImage(&r, 255, 0, 0);

// print on screen here

if(gameOver) {

backgroundSprite.r = kennySprite.r = characterSprite.r = wallSprite[0].r = wallSprite[1].r = wallSprite[2].r = 64;

backgroundSprite.g = kennySprite.g = characterSprite.g = wallSprite[0].g = wallSprite[1].g = wallSprite[2].g = 16;

backgroundSprite.b = kennySprite.b = characterSprite.b = wallSprite[0].b = wallSprite[1].b = wallSprite[2].b = 16;

FntPrint("\n\n\n\n\n\n\n\n\n\n\n y o u l o s e ...\n\n\n g a m e o v e r\n\n\n\n your score: %d\n\n\n press start to begin\n a new game", finalScore);

}

if((gameLevel > 0) && (start == true)) {

FntPrint("\nScore:%4d\nHealth: %d Enemy Health: %d\n", score, health, enemyHealth);

}

if(start == false) {

FntPrint("\n\n\n\n\n\n\n\n\nShots Fired: %3d \n\nShots Hit: %3d \n\n\nAccuracy: %3d percent \n\n\n\nYour Health: %3d \n\n Score: %3d \n\nPress button on back\n of gun to continue...", shotsFired, shotsHit, accuracy, health, score);

}

 Display(activeBuffer);

} // end OrderAndDisplay

/**

Routine: PadRoutine

Parameters: none

Returns: none

Description: handles controllers

***/

void PadRoutine (void) {

if ((PadData & Pad2Start) && (PadData != opadd) && (newGame == 1)) {

DisplayMenu2 = true;

}

if ((PadData & Pad2Start) && (PadData != opadd)) {

DisplayMenu = true;

}

if ((PadData & Pad2x) && (PadData != opadd)) {

if(!duck) duck = true;

else duck = false;

}

if ((PadData & Pad2sqr) && (PadData != opadd)) {

shotsFired++;

PlaySample(&fired);

}

opadd = PadData;

} // end PadRoutine

/**

Routine: ShowMenus

Parameters: none

Returns: none

Description: Pulls up Menu if toggled

***/

void ShowMenus (void) {

while (DisplayMenu == true){

PadData = pad_read ();

switch (menuUpdate(title, menu, PadData)) {

case 0: /* Start New Game */

gameLevel = 1;

newLevel = true;

newGame = false;

gameOver = false;

DisplayMenu = false;

DisplayMenu2 = true;

break;

case 1:
/* Jump to Next Level */

if(!newGame) gameLevel++;

newLevel = true;

DisplayMenu = false;

DisplayMenu2 = false;

break;

case 2:
/* Exit Menu */

DisplayMenu = false;

DisplayMenu2 = false;

break;

} // end switch

opadd = PadData;

OrderAndDisplay();

} // end while

while (DisplayMenu2 == true){

PadData = pad_read();

switch (menuUpdate(title2, menu2, PadData)) {

case 0: /* Easy */

difficulty = 1;

DisplayMenu2 = false;

break;

case 1:
/* Medium */

difficulty = 2;

DisplayMenu2 = false;

break;

case 2:
/* Hard */

difficulty = 3;

DisplayMenu2 = false;

break;

} // end switch

opadd = PadData;

OrderAndDisplay();

} // end while

} // end ShowMenus

/**

Routine: LoadFont

Parameters: none

Returns: none

Description: Loads font for game

***/

void LoadFont (void) {

 FntLoad(960, 256);

 SetDumpFnt(id = FntOpen(10,10,SCREEN_WIDTH-10,SCREEN_HEIGHT-20,0,512));

} // end LoadFont

/**

Routine: AnimateCharacter

Parameters: none

Returns: none

Description: moves bad guy around

***/

void AnimateCharacter (void) {

random = rand()%100;

switch(charState) {

case 0:

// stationary behind left

if(characterSprite.y != baseHeight) characterSprite.y = baseHeight;

if(characterSprite.x != LEFT_LOC) characterSprite.x = LEFT_LOC;

if(random >= 99) {

charState = 2;

}

else if(random >= 98) {

charState = 4;

charUp = true;

}

break;

case 1:

// stationary behind right

if(characterSprite.y != baseHeight) characterSprite.y = baseHeight;

if(characterSprite.x != RIGHT_LOC) characterSprite.x = RIGHT_LOC;

if(random >= 99) {

charState = 3;

}

else if(random >= 98) {

charState = 4;

charUp = true;

}

break;

case 2:

// moving left to right

if(characterSprite.x <= RIGHT_LOC) {

characterSprite.x += 2*difficulty;

if(random >= 100-2*difficulty) {

characterShooting = true;

firstTime = true;

if(!duck) {

health -= 3;

backgroundSprite.r = kennySprite.r = characterSprite.r = wallSprite[0].r = wallSprite[1].r = wallSprite[2].r = 223;

backgroundSprite.g = kennySprite.g = characterSprite.g = wallSprite[0].g = wallSprite[1].g = wallSprite[2].g = 32;

backgroundSprite.b = kennySprite.b = characterSprite.b = wallSprite[0].b = wallSprite[1].b = wallSprite[2].b = 32;

}

}

if(characterShooting) {

AnimateGunFire(characterSprite.x, characterSprite.y);

if(firstTime) {

PlaySample(&firedAt);

firstTime = false;

}

}

if(characterShot) {

AnimateBlood(characterSprite.x, characterSprite.y);

}

}

else {

charState = 0;

characterSprite.x = RIGHT_LOC;

}

break;

case 3:

// moving right to left

if(characterSprite.x >= LEFT_LOC) {

characterSprite.x -= 2*difficulty;

if(random >= 100-2*difficulty) {

characterShooting = true;

firstTime = true;

if(!duck) {

health -= 3;

backgroundSprite.r = kennySprite.r = characterSprite.r = wallSprite[0].r = wallSprite[1].r = wallSprite[2].r = 223;

backgroundSprite.g = kennySprite.g = characterSprite.g = wallSprite[0].g = wallSprite[1].g = wallSprite[2].g = 32;

backgroundSprite.b = kennySprite.b = characterSprite.b = wallSprite[0].b = wallSprite[1].b = wallSprite[2].b = 32;

}

}

if(characterShooting) {

AnimateGunFire(characterSprite.x, characterSprite.y);

if(firstTime) {

PlaySample(&firedAt);

firstTime = false;

}

}

if(characterShot) {

AnimateBlood(characterSprite.x, characterSprite.y);

}

}

else {

charState = 1;

characterSprite.x = LEFT_LOC;

}

break;

case 4:

// popup behind wall

if(characterSprite.y <= (baseHeight-50)) {

charUp = false;

}

if((characterSprite.y > (baseHeight-50)) && (charUp)) {

characterSprite.y -= 2*difficulty;

if((random >= 100-4*difficulty) && (characterSprite.y < baseHeight-30)) {

characterShooting = true;

firstTime = true;

if(!duck) {

health -= 3;

backgroundSprite.r = kennySprite.r = characterSprite.r = wallSprite[0].r = wallSprite[1].r = wallSprite[2].r = 223;

backgroundSprite.g = kennySprite.g = characterSprite.g = wallSprite[0].g = wallSprite[1].g = wallSprite[2].g = 32;

backgroundSprite.b = kennySprite.b = characterSprite.b = wallSprite[0].b = wallSprite[1].b = wallSprite[2].b = 32;

}

}

if(characterShooting) {

AnimateGunFire(characterSprite.x, characterSprite.y);

if(firstTime) {

PlaySample(&firedAt);

firstTime = false;

}

}

if(characterShot) {

AnimateBlood(characterSprite.x, characterSprite.y);

}

}

if((!charUp) && (characterSprite.y <= baseHeight)) {

characterSprite.y += 2*difficulty;

if(characterShooting) {

AnimateGunFire(characterSprite.x, characterSprite.y);

}

if(characterShot) {

AnimateBlood(characterSprite.x, characterSprite.y);

}

}

if((characterSprite.y >= baseHeight) && (!charUp)){

if(characterSprite.x <= 140) {

charState = 0;

}

else {

charState = 1;

}

}

break;

 }

} // end AnimateCharacter

/**

Routine: AnimateKenny

Parameters: none

Returns: none

Description: animates Kenny

***/

void AnimateKenny (void) {

random = rand()%100;

switch(kennyState) {

case 0:

// stationary behind left

if(kennySprite.y != baseHeight) kennySprite.y = baseHeight;

if(kennySprite.x != LEFT_LOC) kennySprite.x = LEFT_LOC;

if(random >= 99) {

kennyState = 2;

}

else if(random >= 98) {

kennyState = 4;

kennyUp = true;

}

break;

case 1:

// stationary behind right

if(kennySprite.y != baseHeight) kennySprite.y = baseHeight;

if(kennySprite.x != RIGHT_LOC) kennySprite.x = RIGHT_LOC;

if(random >= 99) {

kennyState = 3;

}

else if(random >= 98) {

kennyState = 4;

kennyUp = true;

}

break;

case 2:

// moving left to right

if(kennySprite.x <= RIGHT_LOC) {

kennySprite.x += 2*difficulty;

if(kennyShot) {

AnimateBlood(kennySprite.x, kennySprite.y);

}

}

else {

kennyState = 0;

kennySprite.x = RIGHT_LOC;

}

break;

case 3:

// moving right to left

if(kennySprite.x >= LEFT_LOC) {

kennySprite.x -= 2*difficulty;

if(kennyShot) {

AnimateBlood(kennySprite.x, kennySprite.y);

}

}

else {

kennyState = 1;

kennySprite.x = LEFT_LOC;

}

break;

case 4:

// popup behind wall

if(kennySprite.y <= (baseHeight-50)) {

kennyUp = false;

}

if((kennySprite.y > (baseHeight-50)) && (kennyUp)) {

kennySprite.y -= 2*difficulty;

if(kennyShot) {

AnimateBlood(kennySprite.x, kennySprite.y);

}

}

if((!kennyUp) && (kennySprite.y <= baseHeight)) {

kennySprite.y += 2*difficulty;

if(kennyShot) {

AnimateBlood(kennySprite.x, kennySprite.y);

}

}

if((kennySprite.y >= baseHeight) && (!kennyUp)){

if(kennySprite.x <= 150) {

kennyState = 0;

}

else {

kennyState = 1;

}

}

break;

 }

} // end AnimateKenny

/**

Routine: AnimateBlood

Parameters: xCoord (int), yCoord(int)

Returns: none

Description: animates blood sequence

***/

void AnimateBlood (int xCoord, int yCoord) {

bloodSprite.x = xCoord;

bloodSprite.y = yCoord;

if((VSync(-1) % 3) == 0) bloodSprite.v += 64;

if(bloodSprite.v > 128) {

bloodSprite.v = 0;

kennyShot = false;

characterShot = false;

}

}

/**

Routine: AnimateGunFire

Parameters: xCoord (int), yCoord(int)

Returns: none

Description: animates gun fire sequence

***/

void AnimateGunFire (int xCoord, int yCoord) {

gunshotSprite.x = xCoord;

gunshotSprite.y = yCoord;

if((VSync(-1) % 3) == 0) gunshotSprite.v += 64;

if(gunshotSprite.v > 128) {

gunshotSprite.v = 0;

characterShooting = false;

}

}

/**

Routine: CheckHit

Parameters: xCoord (int), yCoord(int), xShot(int), yShot(int)

Returns: hit(short)

Description: checks if a hit

***/

short CheckHit(int xCoord, int yCoord, int xShot, int yShot) {

short hit;

if((abs(xCoord+32-xShot) < 32) && (abs(yCoord+32-yShot) < 32) && (!CheckWall(xShot, yShot))) hit = true;

else hit = false;

return hit;

}

/**

Routine: CheckWall

Parameters: xShot(int), yShot(int)

Returns: hit(short)

Description: checks if a hit

***/

short CheckWall(int xShot, int yShot) {

short hit;

if((xShot > (wallSprite[0].x + (wallScaleX*wallSprite[0].w))) && (xShot < wallSprite[1].x)) hit = false;

else if(yShot < wallSprite[0].y) hit = false;

else hit = true;

return hit;

}

/**

Routine: CleanupExit

Parameters: none

Returns: none

Description: Cleans up and exits program

***/

void CleanupExit (void) {

PadStop();

ResetGraph(3);

StopCallback();

} // end CleanupExit

Gun.c

/*

 * $PSLibId: Run-time Library Release 4.4$

 */

/*

gun: sample program *

 *

Copyright (C) 1996 by Sony Corporation

 *

All rights Reserved

 */

#include <r3000.h>

#include <asm.h>

#include <sys/types.h>

#include <libetc.h>

#include <libgte.h>

#include <libgpu.h>

#include <libapi.h>

#include <libgun.h>

#include "gun.h"

static GUN
gun[2];

static PAD
pad[2];

static u_short
v_count[2];

static u_short
h_count[2];

static
LINE_F2 line[2][2];

void guninit(void)

{

//---DB
db[2];

/* double buffer */

//---DB
*cdb;

/* current double buffer */

//---u_long
*ot;

/* current OT */

//---int
cnt;
/* work */

//---int i;

//---ResetCallback();

InitGUN((char *)&pad[0], PADBUFFLEN, (char *)&pad[1], PADBUFFLEN,(char *)&gun[0],(char *)&gun[1],50);

StartGUN();

ChangeClearPAD(0);

//---ResetGraph(0);

/* reset graphic subsystem (0:cold,1:warm) */

//---SetGraphDebug(0);
/* set debug mode (0:off, 1:monitor, 2:dump) */

/* initialize environment for double buffer */

//---SetDefDrawEnv(&db[0].draw, 0, 0, 320, 240);

//---SetDefDrawEnv(&db[1].draw, 0, 240, 320, 240);

//---SetDefDispEnv(&db[0].disp, 0, 240, 320, 240);

//---SetDefDispEnv(&db[1].disp, 0, 0, 320, 240);

/* init font environment */

//---FntLoad(960, 256);

//---SetDumpFnt(FntOpen(16, 16, 256, 200, 0, 512));

//---init_prim(&db[0]);

/* initialize primitive buffers #0 */

/* display */

//---SetDispMask(1);

/* enable to display (0:inhibit, 1:enable) */

//---cdb = db;

//---while (1){

//---PutDispEnv(&cdb->disp); /* update display environment */

//---PutDrawEnv(&cdb->draw); /* update drawing environment */

/* clear ordering table */

//---ClearOTag(cdb->ot, OTSIZE);

/* update sprites */

//---ot = cdb->ot;

//---if (pad_read(cdb)&PADselect)

//---
break;

//---for(i=0; i<2; i++)

//---{

//---
setXY2(&line[i][0], h_count[i]-4, v_count[i],h_count[i]+4,v_count[i]);

//---
AddPrim(ot, &line[i][0]);

//---
setXY2(&line[i][1], h_count[i], v_count[i]-4,h_count[i],v_count[i]+4);

//---
AddPrim(ot, &line[i][1]);

//---}

//---FntPrint("X:%3d Y:%3d \n",h_count[0],v_count[0]);

//---FntPrint("X:%3d Y:%3d \n",h_count[1],v_count[1]);

//---FntFlush(-1);

//---DrawOTag(cdb->ot);

//---DrawSync(0);

/* wait for end of drawing */

//---cnt = VSync(1);

/* check for count */

//---VSync(0);

/* wait for V-BLNK */

//---cdb = (cdb==db)? db+1: db;
/* swap double buffer ID */

//---}

//---StopGUN();

//---RemoveGUN();

//---StopCallback();

}

/*

 * Initialize drawing Primitives

 */

/*

static init_prim(DB
* db)

{

int i;

for(i=0; i<PADMAX; i++)

{

(db+i)->draw.isbg = 1;

setRGB0(&(db+i)->draw, 0, 0, 0);

gun[i].count=0;

h_count[i] = 100*(i+1);

v_count[i] = 100;

SetLineF2(&line[i][0]);

SetLineF2(&line[i][1]);

setRGB0(&line[0][i],255,0,0);

setRGB0(&line[1][i],0,255,0);

}

}

*/

/*

 * Read controll-pad

 */

unsigned long getH(int index) {

return h_count[index];

}

unsigned long getV(int index) {

return v_count[index];

}

unsigned long pad_read(void)//(DB *db)

{

static
u_long
old_padd=0;

u_long
padd = _PadRead();

if(~old_padd & padd & (PADRleft|PADRleft<<16))

{

//ClearImage(&db->draw.clip,255,255,255);

}

if(~old_padd & padd & (PADRleft<<16))

SelectGUN(1,1);

else

SelectGUN(1,0);

if(~old_padd & padd & PADRleft)

SelectGUN(0,1);

else

SelectGUN(0,0);

old_padd = padd;

return padd;

}

u_long _PadRead()

{

 u_short

data[2];

 u_char id;

 long

i;

u_long

gdata;

 for(i=0; i<PADMAX; i++)

 {

 if(pad[i].result != 0)

 id = 0;

 else

 id = pad[i].id;

 switch(id)

 {

 case PADID_GUN :

gdata = ReadGun(i);

if(gdata!=0)

{

h_count[i]=(gdata&0xffff);

v_count[i] = (gdata>>16)&0xffff;

}

 case PADID_CON :

 data[i] = (u_short)((((pad[i].data[0]&0xff)<<8))|(pad[i].data[1])&0xff);

data[i] = ~data[i]&0xffff;

 break;

 default :

 data[i] = 0;

 id = 0;

 }

 }

return (data[0]&0xffff)|(((data[1])<<16)&0xffff0000);

}

long ReadGun(long n)

{

if(gun[n].count == 0)

return 0;

gun[n].count = 0;

return (ReadGunX(&gun[n])&0xffff)|((ReadGunY(&gun[n])<<16)&0xffff0000);

}

u_short ReadGunX(GUN *gun)

{

return gun->hv[0].h/5;

}

u_short ReadGunY(GUN *gun)

{

return gun->hv[0].v;

}

Header.h

#ifndef header_h

#define header_h

#include "stdio.h"

#include <sys/types.h>

#include <libetc.h>

#include <libgte.h>

#include <libgpu.h>

#include "libgs.h"

#include <libspu.h>

#include <libcd.h>

#include <libmath.h>

#include <stdlib.h>

#include <rand.h>

#include <r3000.h>

#include <asm.h>

#include <libapi.h>

#include <libgun.h>

#include "audio.h"

#include "gun.h"

#endif

Gun.h

/*

 * Primitive Buffer

 */

#ifndef gun_h

#define gun_h

#define OTSIZE

16

/* size of ordering table */

typedef struct {

DRAWENV

draw;

/* drawing environment */

DISPENV

disp;

/* display environment */

u_long

ot[OTSIZE];

/* ordering table */

} DB;

#define PADMAX 2

#define PADBUFFLEN 34

#define PADID_CON 0x41

#define PADID_GUN 0x31

/* Controller Pad 1 Defines */

#define Pad1Up (1<<12)

#define Pad1Down (1<<14)

#define Pad1Left (1<<15)

#define Pad1Right (1<<13)

#define Pad1L1 (1<< 2)

#define Pad1L2 (1<< 0)

#define Pad1R1 (1<< 3)

#define Pad1R2 (1<< 1)

#define Pad1tri (1<< 4)

#define Pad1sqr (1<< 7)

#define Pad1crc (1<< 5)

#define Pad1x (1<< 6)

#define Pad1Start (1<<11)

#define Pad1Select (1<<8)

/* Controller Pad 2 Defines */

#define Pad2Up (1<<28)

#define Pad2Down (1<<30)

#define Pad2Left (1<<31)

#define Pad2Right (1<<29)

#define Pad2L1 (1<<18)

#define Pad2L2 (1<<16)

#define Pad2R1 (1<<19)

#define Pad2R2 (1<<17)

#define Pad2tri (1<<20)

#define Pad2sqr (1<<23)

#define Pad2crc (1<<21)

#define Pad2x (1<<22)

#define Pad2Start (1<<27)

#define Pad2Select (1<<24)

typedef struct {

 u_short v;

 u_short h;

}HV_CNT;

typedef struct {

char result;

char id;

char data[32];

}PAD;

typedef struct {

char dummy;

char count;

 HV_CNT
hv[20];

}GUN;

//init_prim(DB *db); /* preset unchanged primitive members */

unsigned long getH(int index);

unsigned long getV(int index);

unsigned long pad_read(void);// (DB *db); /* parse controller */

long ReadGun(long);

u_short ReadGunX(GUN *),ReadGunY(GUN *);

u_long _PadRead();

#endif

Audio.h
#ifndef audio_h

#define audio_h

#include <sys/types.h>

#include <libsnd.h>

#define VH_ADDR 0x801380D8

#define VB_ADDR 0x800CF4D8

//#define SEQ_ADDR 0x80600000

#define MVOL 127

#define SVOL 127

#define VOL 127

short vab;

short seq;

char seq_table[SS_SEQ_TABSIZ * 1 * 1];

typedef struct {

long prog;

long pitch;

} SOUNDFX;

#endif

Pad.h
#ifndef pad_h

#define pad_h

/* Controller Pad 1 Defines */

#define Pad1Up (1<<12)

#define Pad1Down (1<<14)

#define Pad1Left (1<<15)

#define Pad1Right (1<<13)

#define Pad1L1 (1<< 2)

#define Pad1L2 (1<< 0)

#define Pad1R1 (1<< 3)

#define Pad1R2 (1<< 1)

#define Pad1tri (1<< 4)

#define Pad1sqr (1<< 7)

#define Pad1crc (1<< 5)

#define Pad1x (1<< 6)

#define Pad1Start (1<<11)

#define Pad1Select (1<<8)

/* Controller Pad 2 Defines */

#define Pad2Up (1<<28)

#define Pad2Down (1<<30)

#define Pad2Left (1<<31)

#define Pad2Right (1<<29)

#define Pad2L1 (1<<18)

#define Pad2L2 (1<<16)

#define Pad2R1 (1<<19)

#define Pad2R2 (1<<17)

#define Pad2tri (1<<20)

#define Pad2sqr (1<<23)

#define Pad2crc (1<<21)

#define Pad2x (1<<22)

#define Pad2Start (1<<27)

#define Pad2Select (1<<24)

#endif

PS_Debug_Prefix.h

/*

 *
PS_Debug_Prefix.h
- Target #DEFINEs for the Sony PlayStation

 *

 *
Copyright © 1996 metrowerks inc. All Rights Reserved.

 *

 */

#ifndef __PS_Debug_prefix__

#define __PS_Debug_prefix__

/* general target hardware/os definitions */

#define __dest_os
__PSXOS

#define TARGET_LITTLE_ENDIAN

#define TARGET_HEAP_ALIGNMENT
16

#define TARGET_DEVICE

__PS_PSX

#define LANGUAGE_C

#define _DEBUG

#if __option(wchar_type)

#define _WCHAR_T

#endif

#endif

PS_Release_Prefix.h

/*

 *
PS_Release_Prefix.h
- Target #DEFINEs for the Sony PlayStation

 *

 *
Copyright © 1996 metrowerks inc. All Rights Reserved.

 *

 */

#ifndef __PS_Release_prefix__

#define __PS_Release_prefix__

/* general target hardware/os definitions */

#define __dest_os
__PSXOS

#define TARGET_LITTLE_ENDIAN

#define TARGET_HEAP_ALIGNMENT
16

#define TARGET_DEVICE

__PS_PSX

#define LANGUAGE_C

#define NDEBUG

#if __option(wchar_type)

#define _WCHAR_T

#endif

#endif

Audio.c

/***

* AUDIO.C

* Audio module for loading & playing MIDI sounds and music

* Author : Sean Eyestone

* Date: 10/8/02

***/

#include "audio.h"

//** prototypes **//

void switchTracks(int);

//** actual code **//

void InitSound (void){

SsInit();

 //Reset Sound System

SsSetTableSize (seq_table, 1, 1);
// Specify area for SEQ

SsSetTickMode (SS_TICK240);
 // set tick mode = 1/240s

//Transfer VAB

vab = SsVabOpenHead ((u_char *)VH_ADDR, -1);

if (vab < 0) {

printf ("SsVabOpenHead : failed!\n");

return;

}

if (SsVabTransBody ((u_char*)VB_ADDR, vab) != vab) {

printf ("SsVabTransBody : failed!\n");

return;

}

SsVabTransCompleted (SS_WAIT_COMPLETED);

//Open SEP

//seq = SsSeqOpen((u_long *)SEQ_ADDR, vab);

//Start Sound System

SsStart();

SsSetMVol(MVOL, MVOL);
 // set main volume

//SsSeqSetVol(seq, SVOL, SVOL);
 // set SEP volume

//Play SEP

//SsSeqPlay(seq, SSPLAY_PLAY, SSPLAY_INFINITY);

}

void PlaySample (SOUNDFX *sample){

SsVoKeyOff(sample->prog, sample->pitch);

//stop if already playing

SsVoKeyOn (sample->prog, sample->pitch, VOL, VOL);
//then play again

}

void StopSoundSystem (void){

//SsSeqStop(seq);

// stop seq data

//SsSeqClose(seq);

 // close seq data

SsVabClose(vab);
 // close vab data

SsEnd();

 // sound system end

SsQuit();

 // Exit Sound System

}

/*void switchTracks (int direction) {

SsSeqStop(seq);

SsSeqClose(seq);

SsVabClose(vab);

}*/

- 16 -

